
Improving the Effectiveness of Peer Code Review in Identifying
Security Defects

Rajshakhar Paul
r.paul@wayne.edu

Wayne State University
Detroit, Michigan, USA

ABSTRACT
Prior studies found peer code review useful in identifying security
defects. That is why most of the commercial and open-source soft-
ware (OSS) projects embraced peer code review and mandated the
use of it in the software development life cycle. However, despite
conducting mandatory peer code review practices, many security-
critical OSS projects such as Chromium, Mozilla, and Qt are report-
ing a high number of post-release vulnerabilities to the Common
Vulnerabilities and Exposures (CVE) database. Practitioners may
wonder if there is any missing piece in the puzzle that leads code
reviews to miss those security defects. Therefore, the primary ob-
jective of this dissertation study is to improve the effectiveness of
peer code review in identifying security defects.

To meet this goal, I plan to empirically investigate: (i) why se-
curity defects escape code reviews, (ii) what are the challenges
developers face to conduct effective security code reviews, (iii) how
to build effective security code review strategy, and (iv) how to
make effective utilization of security experts during code reviews.

CCS CONCEPTS
• Security and privacy → Software security engineering; •
Software and its engineering → Empirical software valida-
tion; Search-based software engineering.

KEYWORDS
security, code review, vulnerability, software development

1 INTRODUCTION
Security defects belong to a special class of software defects that
can be exploited by the attackers to destroy, expose, or alter sensi-
tive information. According to Gary McGraw, adopting peer code
review in the software development life-cycle can be effective in
eliminating such defects [20]. Prior empirical studies [8, 13, 25] find
peer code review useful in identifying security defects which sup-
port the recommendation of Gary McGraw. Since the longer it takes
to detect and fix a security vulnerability, the more that vulnerability
will cost [20], code reviews, which occur almost immediately after
the introduction of a vulnerability, can effectively minimize the
economic impact of a security vulnerability as well. That is why,
most of the popular open-source (OSS) and proprietary software
projects mandate peer code review in their software development
process [28]. That means each code change is inspected and verified
by at least one reviewer. Prior study also finds that developers of
those projects spend 10-15% of their working hours conducting
peer code review [7].

However, despite investing lots of resources and time on peer
code review, a large number of post-release vulnerabilities still have
been identified and reported to the Common Vulnerabilities and
Exposures (CVE) database1. Since security defects are different from
other bugs [10], practitioners may wonder if there are any missing
pieces that lead peer code reviews to miss those security defects.
To fill that gap, the primary objective of this doctoral dissertation is
to improve the effectiveness of peer code review in identifying security
defects. To achieve this goal, I plan to conduct the following three
studies.
#1: Identifying why security defects go unnoticed during

code reviews
Motivation: The practitioners may want to investigate if
there is any flaw or weakness in the contemporary code
review process that lead code reviews to miss security de-
fects. For example, practitioners may wonder: (i) whether
the code change is too difficult to comprehend, (ii) whether
the reviewers have adequate expertise on the code they are
reviewing, or (iii) whether the reviewers spending adequate
time on reviewing the code.
Objective: To identify the factors that can differentiate between
code reviews that successfully identified security defects and
the code reviews that missed such security defects.

#2: Identifying the challenges in security code review and
building effective strategies
Motivation: Understanding the underlying challenges devel-
opers face to conduct effective security code review would
help practitioners in two ways– (i) they could pinpoint the
weakness of code review in identifying security defects, and
(ii) they could build an effective strategy/guideline for secu-
rity code reviews.
Objective: Two objectives– (i) better understand the chal-
lenges developers face to conduct effective security code reviews
and (ii) identify developers’ perspective on security code review
effective practices.

#3: Utilizing security code reviewers effectively
Motivation: Involving security experts to review every code
changes would help the project management to ensure better
security. However, such security experts are scarce [19] and
involving them to review every code change is not feasible.
Thus, utilizing security experts to review the appropriate
security-critical code changes is crucial.
Objective: To build a machine learning based model to au-
tomatically identify security-critical code change and recom-
mend expert reviewers based on the potential defect type.

1https://cve.mitre.org/

https://cve.mitre.org/


Rajshakhar Paul

2 BACKGROUND
2.1 Peer Code Review
Peer code review is a software quality assurance practice where
developers send their code to their peers to verify that the code
achieves adequate quality to get merged into the project main code-
base. Compared to traditional formal code inspection approaches,
modern peer code review is more informal, lightweight, and tool-
based. That is why developers practice peer code review on a regular
basis [4]. Studies find peer code review not only useful in identify-
ing missing defects [5, 18], but also effective in spotting security
defects [8, 13, 19, 24]. That is why most of the popular OSS and
proprietary projects embraced peer code review practices in their
software development life-cycle [28].

2.2 Security Vulnerabilities
A software security vulnerability is a weakness or flaw in the soft-
ware component which can be exploited by an attacker to execute
unauthorized actions such as exposing, destroying, or altering con-
fidential data. Writing buggy code, violating security protocol while
coding, inappropriate system design, or poor implementation qual-
ity are the preliminary reasons behind introducing vulnerability.
There can be hundreds of types of security defects occurred in the
code. The security communities follow Common Weakness Enu-
meration (CWE) [1] as a formal categorization of those security
defects.

2.3 Related Works
Researchers have justified the positive impact of peer code reviews
in identifying security defects [8, 12, 29]. However, still a signifi-
cant number of post-release security defects are being reported in
the CVE database following an increasing trend. Prior studies of
Edmundson et al. [13] and Beller et al. [5] raised questions about
the effectiveness of peer code review in identifying security defects.
However, they do not conduct any investigation to identify why
peer code reviews fail to ensure that effectiveness. Over the years,
researchers have introduced different code review attributes that
can be useful to identify security defects [3, 21, 22]. Meenely and
Williams find that engagement of too many developers on a single
source file has higher probability to make that file vulnerable [23].
Munaiah et al. apply natural language processing techniques on
code review comments of Chromium project and find that code
reviews that have discussions with higher sentiment, lower inquis-
itiveness, and lower syntactical complexity have more potential
to miss security vulnerabilities. However, none of these studies
investigate the underlying reasons behind why developers miss
security defects during code reviews.

The study of Woon and Kankanhalli suggests that developers’
lack of intention to practice secure software development is the
main reason behind introducing vulnerabilities [30]. Xie et al. find
a disconnection between developers’ security knowledge and their
mindset towards secure programming [31]. However, they conclude
their results based on interviewing 15 developers which is relatively
a small sample size.

To identify security defects, we need to conduct effective security
code review. Howard provides a guideline of conducting security

code review based on his experience about what he follows in
professional life [16]. He maintains a checklist of ten tactics while
conducting security code reviews. Ionescu suggests checking for
OWASP Top 102 and MITRE Top 253 while conducting security
code review [17]. Chapman et al. also provide a checklist of nine
security defects in the OWASP Code Review Guide that need to be
investigated while conducting security code reviews [11]. Although,
those guidelines provide several ideas about conducting security
code review, none of those are empirically verified.

In this dissertation proposal, I empirically investigate the un-
derlying reasons behind why security defects escape code reviews.
In addition, I plan to develop an empirically verified strategy to
conduct effective security code reviews.

3 PROPOSED RESEARCH
In the following subsections, I describe the research approaches of
my three studies.

3.1 Study1: Identifying Why Security Defects
Go Unnoticed during Code Reviews

To investigate the underlying reasons behind why security defects
are escaping code reviews, I construct two research questions.

Identifying security defects depends on a reviewer’s knowledge
and understanding about the project architecture and potential se-
curity implications. That is why a reviewer may find some security
defects challenging to identify during code reviews. Identification
of such security defects that are harder to identify during code
reviews could help the project management in two ways– (i) the
management could educate the developers on those specific secu-
rity defect categories, and (ii) the management could understand
which testing tools they need to leverage to protect against those
defects. That is why, I construct my first research question as:

RQ1: Which categories of security defects have higher probability
of being escaped during code reviews?

In addition, identifying if any attributes apart from the defect
category play significant role in differentiating code reviews that
identify security defects from code reviews where security defects
escape could help the practitioners to find out the missing piece of
the puzzle. On this goal, my second research question is:

RQ2:Which attributes plays significant role in identifying security
defects during code review?

3.1.1 Research Methodology: To answer the two research ques-
tions, we conduct a case study of Chromium OS project since
Chromium is a crucial OSS project with significant security im-
plications and it has been subject to prior studies related to security
investigation [10, 21, 24]. The Chromium project also provides a
publicly accessible REST API which allow us to mine all publicly
available code reviews.

I collect two types of code review data from Chromium OS
project– (i) code review that successfully identified security de-
fects, and (ii) code review where security defects escaped. To build
the dataset of code review that identified security defects, I adopt
a keyword-based mining approach as Bosu et al. [8]. To build the

2https://owasp.org/www-project-top-ten/
3https://cwe.mitre.org/top25/archive/2020/2020_cwe_top25.html

https://owasp.org/www-project-top-ten/
https://cwe.mitre.org/top25/archive/2020/2020_cwe_top25.html


Improving the Effectiveness of Peer Code Review in Identifying Security Defects

dataset of code reviews where security defects escaped, I utilize
the custom search feature of Monorail-based bug tracking system
of Chromium OS project4 and adopt a modified SZZ-based algo-
rithm [6]. In total, I collect 516 code reviews that identified security
defects and 374 code reviews where security defects escaped. I
classify each security defect under a Common Weakness Enumera-
tion (CWE) class [1] which is a standard classification scheme of
software weakness types.

3.1.2 Research Progress: For each code review, I collect 18 attributes
as described in the work of Paul et al. [27] and build a logistic re-
gression model followed by the approach of Harrell Jr [15]. Our
model achieves an AUC score[14] of 0.914 and an adjusted 𝑅2 value
of 0.6375 which is considered as a good fit [26]. In addition, Our
attributes explain 47.21% variances of the model which can be con-
sidered as a significant improvement over the NULL model.

I find that some security defects are significantly (𝜒2 = 491.69,
𝑝 < 0.001) less likely to be identified during code reviews. Security
defects related to exposure of resource to wrong sphere (CWE
668), improper access control (CWE 284), improper input validation
(CWE 20), and incorrect type conversion/cast (CWE 704) have very
high probability of being escaped during code reviews. On the other
hand, security defects related to use of potentially unsafe methods
(CWE 676), resource leak (CWE 404), improper synchronization of
multi-threaded applications (CWE 662), potential race condition
(CWE 362), and incorrect calculation of array/buffer/integer size
(CWE 682) have higher probability of being identified during code
reviews.

The regressionmodel also finds that if the code review has higher
review time, higher number of mutual reviews between the code
author and reviewer, if the reviewer has prior review experience
with the source code file that is under review, or if the code change
is labeled as bug-fix of a prior defect, the code review has higher
probability that it will identify the security defects. On the other
hand, if the code change touches multiple directories, if the source
file has higher number of prior commits, or if the number of re-
view comments gets higher during the review cycle, the security
defect is more likely to be escaped. My paper on these findings has
been accepted to the 43𝑟𝑑 International Conference on Software
Engineering (ICSE’21) [27].

3.1.3 Contributions: The main contributions of this study are:

• An empirically built and validated dataset of code reviews
that either missed or identified security defects.

• An empirical investigation of security defects that are iden-
tified during code review Vs. security defects that escape.

• A logistic regression model that can identify attributes that
play significant role in identifying security defects during
code reviews.

• A publicly accessible code and dataset.

4https://crbug.com

3.2 Study2: Identifying the Challenges in
Security Code Review and Building
Effective Strategies

Since my first study identifies a set of security defects that have
higher probability of being escaped during code reviews and a
set of attributes that play significant role behind that escape, in
my second study, I aim to investigate what challenges developers
face to conduct effective security code reviews. To identify such
challenges, I plan to investigate developers’ perspective on this
matter. In addition, based on the developers’ feedback, I plan to
develop a guideline that help conducting effective security code
reviews. So, the overall study is divided into two parts.

(Part 1) Identifying challenges in security code review: To
understand the challenges that developers face to conduct effective
security code review, I construct two research questions.

Understanding developers’ perspective regarding why they miss
security defects during code review would help the project manage-
ment to identify necessary steps that need to be undertaken. That
is why, I construct my first research question as:

RQ1.1: Why do developers miss security defects during code re-
views?

Understanding which security defects developers find difficult to
spot during code reviews would help the project management more
to understand what additional testing tools need to be leveraged
and how they can provide training to the developers to spot those
security defects. It will also help to cross-check with the findings
of my first study. For that, my second research questions is:

RQ1.2:Which categories of security defects are more difficult to
identify during code reviews?

(Part 2) Building effective security code review strategy:
There are different approaches and guidelines about how to conduct
security code review [11, 16, 17]. However, there is no empirically
verified evidence that can answer what approaches are effective in
identifying security defects during code reviews and how to build
expertise in conducting security code review. To investigate that, I
construct another three research questions.

It can require multiple sources of knowledge to become a security
expert. Identifying those sources would help developers to build
expertise in conducting effective security code review. For that, I
construct my first research question as:

RQ2.1: What helps developers to build expertise in conducting
security code review?

A project management may want to investigate if their followed
approach of security code review has any weakness or gap. Iden-
tifying what approaches do developers find most effective while
conducting security code review would enlighten the management
to fill that gap. For that, my second research question is:

RQ2.2: Which approaches developers find most effective while
conducting security code review?

Finally, understanding which initiatives the developers think
that the project management should take to improve security code
reviewing would help the management to better understand the
necessary steps the project should adopt. For that why my third
and final research questions is:

RQ2.3: Which initiatives a project can take to improve security
code reviews?

https://crbug.com


Rajshakhar Paul

3.2.1 Methodology: Since I am planning to investigate develop-
ers’ perspective to identify the existing challenges and potential
approaches for effective strategy, I choose questionnaire survey
as my research instrument. I design a survey with 25 questions
where each question either belongs to respondents’ demographic
or any of the five research questions that I construct in the previous
subsection. I sent the survey to 5,697 developers of 37 different OSS
projects and got reply from 315.

Since apart from RQ1.2, all the questions related to the RQs were
open-ended, I follow qualitative analysis approach. I with one of
my peers manually classify each response to a particular category
following the similar approach of Bosu et al. [9].

3.2.2 Research Progress: The data collection and analysis is com-
pleted. Two manuscripts of this study are currently under review.

3.2.3 Expected Contributions: The expected contributions of this
study are:

• A better understanding about the challenges developers face
while conducting security code review.

• A better understanding about the security defects that de-
velopers find difficult to spot during code review.

• A better understanding about the knowledge source that
help developers building expertise in security.

• A better understanding the approaches modern developers
find effective while conducting security code review.

• A list of recommendations a project management can adopt
to produce better security code reviewers.

3.3 Study3: Utilizing Security Code Reviewers
Effectively

To utilize security code reviewers effectively, we will need to iden-
tify which code reviews raise security concern. On this goal, I plan
to build a machine learning based model to automatically identify
a code review as soon as that triggers a security concern. I will be
leveraging both the source code and code review discussion. In a
code review, if any security concern appears, developers including
code author and reviewers may engage in a discussion to resolve
that concern (terming as ‘security discussion’ hereinafter). Develop-
ers often discuss the origin of the problem and potential solution to
that. However, some security concerns may go unnoticed. Or even
if noticed, the lack of involvement of security experts may mislead
to a fragile solution which can lead further security vulnerability.
An additional scrutiny from a security expert before merging the
code can reduce the probability of introducing further security
vulnerability.

3.3.1 Methodology: I will be using code review data of Chromium
OS project. Chromium use Gerrit5 for tool-based code review. I
will be collecting code review comments from Gerrit. For each
code review comment, I will also collect the corresponding source
code file. We can extract the line/s of source code that trigger the
discussion. After collecting data, I with one ofmy peers will label the
code review comment whether the comment is related to security
concern or not.

5https://chromium-review.googlesource.com/

Once the data labelling is done, I will be developing a machine
learning based model to predict whether a code review comment is
security-related or not. Once the model will find a security-related
comment, it will label the entire discussion as a security discussion.
The input to the model will be code review comments written in
natural English and the code context that triggered the discussion.
I will be leveraging Natural Language Processing (NLP) techniques
for both comments and code. For comments, I will perform nec-
essary pre-processing steps before building the model. For code
context, I will be extracting the entire function/method from the
source code where the line/s that trigger discussion belong. Since,
taking only the line/s that trigger discussion will be too less to ex-
tract context, and taking the entire code can be too much to extract
context or can be out of context, I consider that the appropriate code
context for a certain line can be extracted from the function body
where that line belongs. Once I extract the function body, I will
utilize the Code2Vec model [2] to extract the code context. Then
I will build the model using pre-processed text and code context.
The model will be able to identify security discussion in real-time.

In addition, I will be developing a reviewer recommendation sys-
tem which will automatically assign the best-fitted expert reviewer
to scrutinize the code change that triggers security discussion.

3.3.2 Research Progress: The data collection and labelling pro-
cesses are ongoing. The detailed approach to build the system is
yet to be finalized.

3.3.3 Expected Contributions: The expected contributions are:
• An empirically developed and validated dataset of code re-
view comments that either belong to security discussion or
do not.

• A machine learning based model to automatically identify
code reviews that trigger security concern.

• A reviewer recommendation system that will automatically
recommend best possible security expert to scrutinize the
code change.

4 CONCLUSION
In my doctoral research, I focus on improving the effectiveness of
peer code review in identifying security defects. To reach my goal,
I construct three novel study approaches. I believe, successful com-
pletion of those studies will help the practitioners to understand–
(i) why contemporary peer code reviews miss security defects, (ii)
what are the challenges developers face to conduct effective secu-
rity code review, (iii) what should project managements adopt for
effective security code review, (iv) how to build an effective security
code review strategy, and (v) how to utilize the security experts
efficiently during code review.

REFERENCES
[1] [n.d.]. Common Weakness Enumeration, A Community-Developed List of Soft-

ware & Hardware Weakness Types. https://cwe.mitre.org/about/index.html.
Accessed: 2021-07-08.

[2] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. 2019. code2vec: Learn-
ing distributed representations of code. Proceedings of the ACM on Programming
Languages 3, POPL (2019), 1–29. https://doi.org/10.1145/3290353

[3] Henrique Alves, Baldoino Fonseca, and Nuno Antunes. 2016. Software metrics
and security vulnerabilities: dataset and exploratory study. In 2016 12th European
Dependable Computing Conference (EDCC). IEEE, 37–44. https://doi.org/10.1109/
EDCC.2016.34

https://chromium-review.googlesource.com/
https://cwe.mitre.org/about/index.html
https://doi.org/10.1145/3290353
https://doi.org/10.1109/EDCC.2016.34
https://doi.org/10.1109/EDCC.2016.34


Improving the Effectiveness of Peer Code Review in Identifying Security Defects

[4] Alberto Bacchelli and Christian Bird. 2013. Expectations, outcomes, and chal-
lenges of modern code review. In 2013 35th International Conference on Software
Engineering (ICSE). IEEE, 712–721. https://doi.org/10.1109/ICSE.2013.6606617

[5] Moritz Beller, Alberto Bacchelli, Andy Zaidman, and Elmar Juergens. 2014. Mod-
ern code reviews in open-source projects: Which problems do they fix?. In Pro-
ceedings of the 11th working conference on mining software repositories. 202–211.
https://doi.org/10.1145/2597073.2597082

[6] Markus Borg, Oscar Svensson, Kristian Berg, and Daniel Hansson. 2019. SZZ un-
leashed: an open implementation of the SZZ algorithm-featuring example usage
in a study of just-in-time bug prediction for the jenkins project. In Proceedings of
the 3rd ACM SIGSOFT International Workshop on Machine Learning Techniques
for Software Quality Evaluation. 7–12. https://doi.org/10.1145/3340482.3342742

[7] Amiangshu Bosu, Jeffrey C Carver, Christian Bird, Jonathan Orbeck, and Christo-
pher Chockley. 2016. Process aspects and social dynamics of contemporary
code review: Insights from open source development and industrial practice
at microsoft. IEEE Transactions on Software Engineering 43, 1 (2016), 56–75.
https://doi.org/10.1109/TSE.2016.2576451

[8] Amiangshu Bosu, Jeffrey C Carver, Munawar Hafiz, Patrick Hilley, and Derek
Janni. 2014. Identifying the characteristics of vulnerable code changes: An
empirical study. In Proceedings of the 22nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering. 257–268. https://doi.org/10.1145/2635868.
2635880

[9] Amiangshu Bosu, Anindya Iqbal, Rifat Shahriyar, and Partha Chakraborty. 2019.
Understanding the motivations, challenges and needs of blockchain software
developers: A survey. Empirical Software Engineering 24, 4 (2019), 2636–2673.
https://doi.org/10.1007/s10664-019-09708-7

[10] Felivel Camilo, Andrew Meneely, and Meiyappan Nagappan. 2015. Do bugs
foreshadow vulnerabilities? a study of the chromium project. In 2015 IEEE/ACM
12th Working Conference on Mining Software Repositories. IEEE, 269–279. https:
//doi.org/10.1109/MSR.2015.32

[11] Jenelle Chapman, Andrew Van der Stock, Eoin Keary, Paolo Perego, David Lowry,
David Rook, Dinis Cruz, and Jeff Williams. 2017. OWASP Code Review Guide v2.
OWASP Foundation, November (2017).

[12] Marco di Biase, Magiel Bruntink, and Alberto Bacchelli. 2016. A security per-
spective on code review: The case of chromium. In 2016 IEEE 16th International
Working Conference on Source Code Analysis and Manipulation (SCAM). IEEE,
21–30. https://doi.org/10.1109/SCAM.2016.30

[13] Anne Edmundson, Brian Holtkamp, Emanuel Rivera, Matthew Finifter, Adrian
Mettler, and David Wagner. 2013. An empirical study on the effectiveness of
security code review. In International Symposium on Engineering Secure Software
and Systems. Springer, 197–212. https://doi.org/10.1007/978-3-642-36563-8_14

[14] James A Hanley and Barbara J McNeil. 1982. The meaning and use of the area
under a receiver operating characteristic (ROC) curve. Radiology 143, 1 (1982),
29–36. https://doi.org/10.1148/radiology.143.1.7063747

[15] Frank E Harrell Jr. 2015. Regression modeling strategies: with applications to
linear models, logistic and ordinal regression, and survival analysis. Springer.
https://doi.org/10.1007/978-3-319-19425-7

[16] Michael A Howard. 2006. A process for performing security code reviews. IEEE
Security & privacy 4, 4 (2006), 74–79. https://doi.org/10.1109/MSP.2006.84

[17] Paul Ionescu. 2019. Security Code Review 101. https://medium.com/@paul_io/
security-code-review-101-a3c593dc6854. Accessed: 2021-07-08.

[18] Mika V Mäntylä and Casper Lassenius. 2008. What types of defects are really
discovered in code reviews? IEEE Transactions on Software Engineering 35, 3
(2008), 430–448. https://doi.org/10.1109/TSE.2008.71

[19] Gary McGraw. 2006. Software security. Building security in (2006).
[20] Gary McGraw, Brian Chess, and Sammy Migues. 2009. Building security in

maturity model. Fortify & Cigital (2009).
[21] Andrew Meneely, Harshavardhan Srinivasan, Ayemi Musa, Alberto Rodriguez

Tejeda, Matthew Mokary, and Brian Spates. 2013. When a patch goes bad:
Exploring the properties of vulnerability-contributing commits. In 2013 ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement.
IEEE, 65–74. https://doi.org/10.1109/ESEM.2013.19

[22] Andrew Meneely, Alberto C Rodriguez Tejeda, Brian Spates, Shannon Trudeau,
Danielle Neuberger, Katherine Whitlock, Christopher Ketant, and Kayla Davis.
2014. An empirical investigation of socio-technical code review metrics and
security vulnerabilities. In Proceedings of the 6th International Workshop on Social
Software Engineering. 37–44. https://doi.org/10.1145/2661685.2661687

[23] Andrew Meneely and Laurie Williams. 2009. Secure open source collaboration:
an empirical study of linus’ law. In Proceedings of the 16th ACM conference on
Computer and communications security. 453–462. https://doi.org/10.1145/1653662.
1653717

[24] Nuthan Munaiah and Andrew Meneely. 2016. Vulnerability severity scoring and
bounties: Why the disconnect?. In Proceedings of the 2nd International Workshop
on Software Analytics. 8–14. https://doi.org/10.1145/2989238.2989239

[25] NuthanMunaiah, Benjamin SMeyers, Cecilia OAlm, AndrewMeneely, Pradeep K
Murukannaiah, Emily Prud’hommeaux, Josephine Wolff, and Yang Yu. 2017.
Natural language insights from code reviews that missed a vulnerability. In
International Symposium on Engineering Secure Software and Systems. Springer,
70–86. https://doi.org/10.1007/978-3-319-62105-0_5

[26] Nico JD Nagelkerke et al. 1991. A note on a general definition of the coefficient
of determination. Biometrika 78, 3 (1991), 691–692.

[27] Rajshakhar Paul, Asif Kamal Turzo, and Amiangshu Bosu. 2021. Why security de-
fects go unnoticed during code reviews? A case-control study of the chromium os
project. In 2021 IEEE/ACM 43rd International Conference on Software Engineering
(ICSE). IEEE, 1373–1385. https://doi.org/10.1109/ICSE43902.2021.00124

[28] Peter C Rigby and Christian Bird. 2013. Convergent contemporary software peer
review practices. In Proceedings of the 2013 9th Joint Meeting on Foundations of
Software Engineering. 202–212. https://doi.org/10.1145/2491411.2491444

[29] Christopher Thompson and David Wagner. 2017. A large-scale study of modern
code review and security in open source projects. In Proceedings of the 13th
International Conference on Predictive Models and Data Analytics in Software
Engineering. 83–92. https://doi.org/10.1145/3127005.3127014

[30] Irene MY Woon and Atreyi Kankanhalli. 2007. Investigation of IS professionals’
intention to practise secure development of applications. International Journal of
Human-Computer Studies 65, 1 (2007), 29–41. https://doi.org/10.1016/j.ijhcs.2006.
08.003

[31] Jing Xie, Heather Richter Lipford, and Bill Chu. 2011. Why do programmers
make security errors?. In 2011 IEEE symposium on visual languages and human-
centric computing (VL/HCC). IEEE, 161–164. https://doi.org/10.1109/VLHCC.
2011.6070393

https://doi.org/10.1109/ICSE.2013.6606617
https://doi.org/10.1145/2597073.2597082
https://doi.org/10.1145/3340482.3342742
https://doi.org/10.1109/TSE.2016.2576451
https://doi.org/10.1145/2635868.2635880
https://doi.org/10.1145/2635868.2635880
https://doi.org/10.1007/s10664-019-09708-7
https://doi.org/10.1109/MSR.2015.32
https://doi.org/10.1109/MSR.2015.32
https://doi.org/10.1109/SCAM.2016.30
https://doi.org/10.1007/978-3-642-36563-8_14
https://doi.org/10.1148/radiology.143.1.7063747
https://doi.org/10.1007/978-3-319-19425-7
https://doi.org/10.1109/MSP.2006.84
https://medium.com/@paul_io/security-code-review-101-a3c593dc6854
https://medium.com/@paul_io/security-code-review-101-a3c593dc6854
https://doi.org/10.1109/TSE.2008.71
https://doi.org/10.1109/ESEM.2013.19
https://doi.org/10.1145/2661685.2661687
https://doi.org/10.1145/1653662.1653717
https://doi.org/10.1145/1653662.1653717
https://doi.org/10.1145/2989238.2989239
https://doi.org/10.1007/978-3-319-62105-0_5
https://doi.org/10.1109/ICSE43902.2021.00124
https://doi.org/10.1145/2491411.2491444
https://doi.org/10.1145/3127005.3127014
https://doi.org/10.1016/j.ijhcs.2006.08.003
https://doi.org/10.1016/j.ijhcs.2006.08.003
https://doi.org/10.1109/VLHCC.2011.6070393
https://doi.org/10.1109/VLHCC.2011.6070393

	Abstract
	1 Introduction
	2 Background
	2.1 Peer Code Review
	2.2 Security Vulnerabilities
	2.3 Related Works

	3 Proposed Research
	3.1 Study1: Identifying Why Security Defects Go Unnoticed during Code Reviews
	3.2 Study2: Identifying the Challenges in Security Code Review and Building Effective Strategies
	3.3 Study3: Utilizing Security Code Reviewers Effectively

	4 Conclusion
	References

